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Figure 1: Once this object is identified as a pair of spectacles seen from above, we find it difficult to
believe its recognition w-- -!nvthing less than immediate. Nevertheless, recognition is at times prone

to errors, and even familiar objects take longer to recognize if they are seen from unusual viewpoints V
[19]. Exploring this and other related phenomena can help elucidate the nature of the representation of
three-dimensional objects in the human visual system.

1 Motivation

Recognition of three-dimensional objects is a complex process, carried out by the human visual
system with such expediency that to introspection it normally appcars to be immediate and.effortless (Figure 1). Computationally, recognition of a 3D object seen from an arbitrary view-
point is difficult because its appearance may vary considerably depending on its pose relative to
the observer (Figure 2). Because of this variability, simple two-dimensional template matching
is hardly a plausible approach to 3D object recognition, since it would require that a template
be stored for each view that will ever have to be recognized. Most contemporary COTrputational
theories of object recognition (see [30] for a survey) reject the notion of view-specific represen-
tations. According to one approach, borrowed from classical pattern recognition, objects are
represented by lists of abstract viewpoint-invariant features [5]. Others suggest that the rep-
resentations are three-dimensional and object-centered, much like the solid geometrical models
used in computer-aided design [1].

Which method of representation offers the best account of human performance in recogni-
tion? While simple introspection tells us that people do have the ability to generalize recognition

to novel views, recent experimental data by Rock and his collaborators [24, 25] indicate that
this ability may be limited in ways that shed light on the nature of object representation.
We describe six experiments which provide converging evidence in favor of viewpoint-specific,
largely two-dimensional representations. Most of the psychophysical results are accompanied
by data from simulated experiments, in which central characteristics of human performance
were replicated by computational models based on viewpoint-specific 2D representations.
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Figure 2: The appearance of a 3D object can depend strongly on the viewpoint. The image on the

right is of the same object as the image on the left, rotated in depth by 900. The difference betweea the
two images illustrates the difficulties encountered by any straightforward template matching approach

to 3D object recognition.

2 3D and 2D representations in computational theories of
recognition

The aim of this section is to provide minimal theoretical background for understanding the
predictions of the various theories relevant to our recognition experiments. More about these
theories and about the implemented computational models of recognition used in our simula-
tions can be found in [30, 1, 14, 31, 20, 8, 91.

2.1 Theories that use 3D representations

As a representative of this class of theories we have considered recognition by viewpoint nor-
malization, of which Ullman's recognition by alignment is an instance [30]. In the alignment
approach the 2D input image is compared with the projection of a stored model, much like in
template matching, but only after the two are brought into register. The transformation neces-
sary to achieve alignment is computed by matching a small number of features in the image with
the corresponding features in the 3D model. The aligning transformation is computed sepa-
rately for each of the models stored in the system. The outcome of the recognition process is the
model that fits the input most closely after the two are aligned. Related schemes [14, 29] choose
the best model using viewpoint consistency constraints, which relate the projected locations of
the features of a model to its 3D structure, given a hypothesized viewpoint. Three-dimensional
models are also postulated by those recognition theories that represent objects by 3D structural
relationships between generic volumetric primitives (e.g., [1]).

Visual systems that rely on three-dimensional object-centered representations can in prin-
ciple achieve uniformly high recognition performance regardless of viewpoint, provided that (i)
the 3D models of the input objects are available, and (ii) the information needed to access
the correct model is present in the image. In particular, the alignment scheme should perform
perfectly if tLe features used in the estimation of the aligning transformation are visible at all
times. As we shall see, our experiments f-olfill both of these conditions.

We stress that the classification of recognition theories accordi cs to .hc type -f representa-
tion they use is more complicated than it appears from the titles of this and the next subsections.
Ullman (30] distinguishes between full alignment that uses 3D models and attempts to compen-
sate for 3D transfor iaLw., ,f ubeLiL.tS, .LUCI ri. 1i,, L. - and the alignment of pictorial
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S descriptions that combines full alignment with decomposition into non-generic parts and uses
multiple views rather than a single object-centered description. Ullman also notes ([30], p.228)
that the multiple-view version of alignment involves representation that is "view-dependent,
since i iuanber of different models of the same object from different viewing positions will
be used," but at the same time "view-insensitive, since the differences between views are par-
tially compensated by the alignment process." Thus, view-independent performance (e.g., error
rate) can be considered the central distinguishing feature of both versions of this theory, which
subsequently will be referred to simply as alignment.

2.2 Theories that use 2D representations

2.2.1 Linear combination of views

Three recently proposed a- ,roaches to recognition dispense with the need to store 3D models.
The first of these, recognition by linear combination of views [31], is built on the observation
that, under orthographic projection, the 2D coordinates of an object point can be represented
as a linear combination of the coordinates of the corresponding points in a small number of
fixed 2D views of the same object. The required number of views depends on the allowed 3D
transformations of the objects and on the representation of an individual view. For a polyhedral
object that can undergo a general linear transformation, three views are required if separate
linear bases are used to represent the x and the y coordinates of a new view. Two views suffice
if a mixed z, y basis is used [31, 8]. A system that relies solely on the linear combination (LC)
approach should achieve uniformly high performance on those views that fall within the space
spanned by the stored set of model views, and should perform poorly on views that belong toS an orthogonal space.

2.2.2 Nonlinear interpolation

Another approach that represents objects by sets of 2D views is nonlinear view interpolation
by regularization networks [20, 21], which includes as a special case interpolation by radial
basis functions (RBFs) [2, 17]. In this approach, generalization from stored to novel views
is regarded as a problem of nonlinear hypersurface interpolation in the space of all possible
views. The interpolation is performed in two stages (see [8] for details). In the first stage
intermediate responses are formed by a collection of nonlinear receptive fields (these can be,
e.g., multidimensional Gaussians). The output of the second stage is a linear combination of
the intermediate receptive field responses. The nonlinear interpolation method is expected to
perform well on novel views that are close to the stored ones and progressively worse on views
that are far from familiar.

2.2.3 Blurred template matching

The third scheme we mention is also based on nonlinear interpolation among 2D views and, in
addition, is suitable for modeling the time course of recognition, including long-term learning
effects [9]. The scheme is implemented as a two-layer network of thresholded sunmation units.
Tlc ii.put layer of the network is a retinotopic feature map (thus the model's name: CLF, or
conjunction of localized features). Th,- distrihiitr, -f t- connections fromr, dle fjrsust evr L.
the scCOId, or representation, layer is such that the activity in the second layer is a blurred

50 3
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Figure 3: An illustration of our experimental paradigm. The experiments consist of two phases: training
and testing. In the training phase subjects are shown an object defined as the target, usually as a motion
sequence of 2D views that leads to an impression of solid shape through the kinetic depth effect. In the
testing phase the subjects are presented with single static views of either the target or a distractor. The
task is to answer "yes" if the displayed object is the current target and "no- otherwise.

version of the input. Unsupervised Hebbian learning augmented by a winner-take-all operation
ensures that each sufficiently distinct input pattern (such as a particular view of a 3D object)
is represented by a dedicated small clique of units in the second layer. Units that stand for
individual views are linked together in an experience-driven fashion, again through Hebbian
learning, to form a multiple-view representation of the object. When presented with a novel
view, the CLF network can recognize it through a process that amounts to blurred template
matching and is related to nonlinear basis function interpolation.

3 Experimental study of recognition: combining psychophysics
with computational modeling

Previous psj .. physical studies of object recognition usually required that the subject name
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S the displayed object (28], or decide whether it is a mirror image of a previously shown object
[13], or determine whether the object is familiar or novel [24]. To concentrate more closely on
recognition per se, we have developed an experimental paradigm based on the two-alternative
forced-choice (2AFC) task [6]. Our experiments consist of two phases: training and testing
(Figure 3). In the training phase subjects are shown an object defined as the target, usually as
a motion sequence of 2D views that leads to an impression of solid shape through the kinetic
depth effect. In the testing phase the subjects are presented with single static views of either
the target or - disi.1actor (one of a relatively large set of similar objects). The subject's task is
to answer "yes" if the displayed object is the current target and ",I," otherwise, and to do so
as quickly and as accurately as possible. These instructions usually resulted in response times
between 0.5 and 1.5 sec1 and in miss rates between 5% and 15% (for familiar views; the miss
rate for progressively unfamiliar views gradually climbed to chance level, that is, 50%2). In all
our experiments the subjects received no feedback as to the correctness of their response.

The main features of our experimental approach are as follows:

" We can control precisely the subject's prior exposure to the targets, by employing novel
computer-generated three-dimensional tube-like objects, similar to those shown in Fig-
ure 2.

* We can generate an unlimited number of novel objects with controlled complexity and
surface appearance.

" Our stereo display system can be used to control the amount of binocular depth informa-
tion available in the stimulus.

S" Because the stimuli are produced by computer graphics, we can conduct identical exper-
iments with human subjects and with computational models. The latter are presented
with the appropriate representation of the stimulus copied directly from the graphics
output.

The recognition problem in our experiments has three distinct aspects, each corresponding
to a different possible selection of the kind of target views shown in the testing phase. The
first and easiest of these is the recognition of a familiar view (one that has been shown during
training). The second possibility is that the test view is unfamiliar but can be obtained through
a rigid 3D transformation of the target (followed by projection). In this case the problem can
be regarded as generalization of recognition to novel views. The third possibility, which is
especially relevant in the recognition of articulated or flexible objects, is that the test view is
obtained through a combination of rigid transformation and nonrigid deformation of the target
object. Results of experiments that explore these three aspects of recognition are presented
in the next three sections. The description of each set of results is accompanied by a short
theoretical interpretation. A general discussion follows in section 7.

'The fast response times indicate that the subjects did not apply conscious problem-solving techniques or
reason explicitly about the stimuli.

2 Miss rate is defined as the error rate computed over trials in which the target, and not one of the distractors,
is shown. The general error rate (including both miss and false alarm errors) was in the same range as the miss
rate, that is, the subjects did not seem to be biased towards either "yes" or "no" answer.
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4 Recognition of previously seen views

4.1 Canonical views and their development with practice: Experiment CV

Theoretical background

Not all previously seen views of commonplace objects are equally easy to recognize. Palmer
et al. [19] showed that naming time for commonplace objects increases monotonically with
misorientation relative to a canonical view (determined independently, e.g., by a subjective
judgement experiment). This dependency of recognition time on the object's attitude has been
interpreted [281 as an indication that objects are recognized only after their apl.earance is
"normalized", that is, brought to a canonical form, by an alignment-like process [30], possibly
related to mental rotation [26]. In the first experiment our aim was to explore the canonical
views phenomenon under controlled conditions and, in particular, to study its development with
practice. The outcome of this experiment could be relevant to the issue of object representation
in recognition, as follows. Stable and persistent canonical views would indicate that canonical
representations, in conjunction with mental rotation, are basic characteristics of recognition.
On the other hand, if canonical views change or disappear altogether, it would be possible
that they are mere epiphenomena that may reflect transient behavior of the mechanism os
recognition rather than its functional architecture.

Experimental results

To address this point, we trained subjects on a motion sequence of target views, then tested
their recognition of s*atic views, all of which have been previously seen as a part of the training
sequence (some of the results regarding experiment CV have been previously reported in [6]).
Shaded, grey-scale images of ten wire-like objects were used, each of the ten serving in turn
as target. The five subjects were first shown a sequence of 144 views of the target that were
timed to create an impression of continuous motion. Recognition of 16 of these views, shown
statically, was then tested in a two-alternative forced-choice setup, in which target and non-
target views appeared in random order and in equal proportions. The experiment was divided
into two sessions, in each of which every test view of the stimuli was shown five times. Mean
error rate was 11.8%.

The development of canonical views with session is shown in Figure 4 as a 3D stereo-plot
of response time vs. orientation, in which local deviations from a perfect sphere represent
deviations of response time from the mean. The response times for the different views become
more uniform with practice. For example, the difference in response time between a "good"
and a "bad" view in the first session (the dip at the pole of the sphere and the large protrusion
in Figure 4, top) decreases in the second session (Figure 4, bottom).

A quantitative representation of this decrease was obtained by computing the coefficient of
variation (SD divided by mean) of response time and miss rate over different views of an object
(see [6] for details). Unlike the mean response time, which is expected to decrease with practice
merely because the subject becomes more proficient in performing the task, the normalized
variation of response time over views can reveal nontrivial effects of practice. The prominence
of the canonical views, as measured by the variation of response time over different views of the
stimuli, decreased significantly with practice (F = 20.5; d.f. = 1,98; p < 0.0001; see Figure 5,

6
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Figure 4: Experiment CV: The spheroid surrounding the target is a 3D sterco-plot of response time

vs. aspect (local deviations from a perfect sphere represent deviations of response time from the mean).

The three-dimensional plot may be viewed by free-fusing the two images in each row, or by using a
stereoscope. Top, Target object and response time distribution for session 1. Canonical aspects (e.g.,

the broadside view, corresponding to the visible pole of the spheroid) can be easily visualized using this

display method. Bottom, The response time difference between views are much smaller in the second
session. Note that not only did the protrusion in the spheroid in session 1 disappear but also the dip in
the polar view is much smaller in session 2.

7
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Figure 5: Experiment CV: Left: Performance of five human subjects. The variation of response time over
different views of an object (an estimate of the strength of the canonical views phenomenon) decreases
with practice. Right: Performance of the CLF model in a simulated experiment was similar to that of
human subjects. The performance measure CORR is defined as the correlation between the input and
a stored representation and serves as an analog of the response time [9]. In this and other figures the
error bars denote +1 standard error of the mean (the bars are too so all to be visible in the left panel).

left). The variation of the miss rate, on the other hand, remained virtually unchanged (F = 2.8;
d.f. = 1,98; p = 0.1 n.s.). The CLF model exhibited similar performance: the coefficient of
variation of an analog of response time decreased with practice (F = 15.88; d.f. = 1, 16;
p < 0.001; see Figure 5, right).

Another manifestation of the fading of canonical views is the change with practice in the
dependency of response time on the misorientation relative to a canonical view. In the first
session, the response time to a given view depended monotonically on the rnisorientation D
relative to the "best" view (defined operationally as the shortest response time for the given
subject and object). In the second session, this dependence disappeared. Note that in the second
session there was still enough variation in response time over views (Figure 5, left) to allow for
a monotonical dependence of response time on D. Nevertheless, the regression of response time
on D was significant in session 1: RT = 0.604 + 0.079D - 0.009D 2 , (RT in sec, D in units
of 30 degrees; F = 5.1; d.f. = 2,729; p < 0.0063); but not significant (F < 1) in session 2
(Figure 6, left). No orderly dependence of miss rate on D was found in either session. Again,
the CLF model performed in a similar fashion (session 1: CORR = 0.734 - 0.024D + 0.002D 2 ;
F = 2.0; d.f. = 2,157; p < 0.14; session 2: F < 1; see Figure 6, right).

Interpretation

Experiment CV yielded two main findings. First, although each view appeared the same
number of times during training, some of the views yielded shorter response times and lower
miss rates than others. Thus, the emergence of canonical views cannot be attributed solely to
differences in the subject's prior exposure to the corresponding aspects of the target.

The second finding has to do with the development of canonical views with practice. It
appears that mere repetition of the experiment suffices to obliterate much of the variation of
response time over different views of the target. As the response times become more uniform,
their distribution undergoes a qualitative change. Whereas in the first experimental session
the regression of response time on misorientation relative to a canonical view has pronounced

8
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Figure 6: Experiment CV: Left. Regression analysis of the subjects' response times. Define the best
view for each objec* as the view with the slortest RT. If recognition involves rotation to the best
(canonical) view, RT should depend monotonically on D = D(tar get, view), the distance between the
best view an' the actually sh- wn view. Right: Regression analysis of the CLF model's performance.
The plotted variable is 1 - CORR, since high values of CORR are analogous to short response times.
(The decrease in RT or CORR at D = 18( is due to the fact that for the wire-frame objects ased in

the experiments the -, tw diametrically opposite the best one is also easily recognized.) For both human
subjects and the model, the dependence is clear for the first session of the experiment (upper curves),

but disappears with practice (second session - Bwer curves).

linear and quadratic components, in the second session the dependence of response time on the

distance to a canonical view becomes disorderly.
The alignment theory [30] can account for the initial orderly dependence of response time

on misorientation and for tne absence of such dependence for m'ss rate (in alignment, the
normalization time, but not the comparison time, can depend on the object's attitude, while
the miss rate should not depend on the attitude). However, one must then postulate a strategy

shift [6], precipitated by practice, in v. hich alignment is replaced by a multiple-view matching,

to account for the increasing uniformity and for the lack of orientation dependence of response
times in the second session (cf. [28]). 3

A more parsimonious account for the results of experiment CV is provided by the nonlinear
multiple-view interpolation approach. Specifically, the CLF scheme ([9]; see section 2.2.3),
which has no provisions for rotating 3D object representations, and which, in fact, does not
involve 3D representations at all, reproduces the two main findings, as shown in Figures 5 and 6.

It remains to be seen whether it can replicate in a sin-ilar fashion the results of the classicd

mental rotation experiments.

4.2 Role of depth cues: Er'-1eriment CUES

Background

3 This would result in a smaller average amount of rotation necessary to normalize the input to a standard,
or canonical, appearance. The response times for the initially "bad" views (determined by the normalization
process) would decrease, reducing the variation of response time over views. The mean miss rates for the "bad"
views (determined by the comparison process), and, consequently, the variation of miss rate over views, would
not change, because of the absence of feedback to the subject.

* 9



From the I- -evious discussion it appears tha, Ae recognition process in experiment CV relied
on view-specific representations. Our next experiments were desigred to probe the extent to
which these representations included depth information available in tire training stimulus, as

well as the advantage, if any, of 3D test stimuli over 2D images of the same stimuli. To that end,
depth cues such as texture, shading and binocular disparity were added to the stimul,-s display
during training, and in some of the test trials. Recognition performance was then compared
across different combinations of these cues.

Ezperimer. tal results

In the first cue-integration experiment [7] the stimuli were images of 10 novel wire-like
objects, rendered under eight different combinations of values "f three parameters: surface
texture (present or absent), 'imulated light position (at the simulated camera or to the left of it)
and binocular disparity (present or absent). Train;_ng was done with maximal depth information
(oblique liht, texture and stereo present). Stimuli were presented using a noninterlaced stereo
-viewino system (StereoGraphics 3Display). A fixed set of i6 views of each ob-ject were used in
both training and test:ng. Testing was divided into two sessions of five trials per view. Five
subjects participated. Mean error rate was 7.5%.

We found that light position and texture cues did not affect performance, but binocular
disparity did. The miss rate was lower in the stereo trials (6.4% as opposed to 8.7% under
mono; F = 5.9; d.f. = 1,392; p < 0.016). The difference in the mean response time between
th,. two conditions was not significant. A regression analysis showed no dcpendence of the
reaction tile on the listance to the best view in either session in the mono condition. In
comparison, for stereo the dependence was not significant in session 1, but strenghthened in
session 2: RT = 0.759 + 0.075D - 0.011D 2 (F = 3.3; d.f. = 2,383; p < 0.036). 0

T-. explore this dissociation, we concentrated on a detailed comparison of the evolution c
performance under stereo and mono conditions over four sessions. Three subjects were trained
on 13 views of the stimuli, evenly spaced at 100 intervals along the equator of the viewing
sphere, then tested repeatedly on the same views.4 The resulting four-session learning curves
in the stereo and mono conditions coincided for the variation of response time, but differed
significantly for the variation of miss rate (Figure 7, top).

The mean response time showed only the trivial decrease with session and was unaffected
by stereo. Ir comparison, the mean miss rate was 8.1% under mono and 2.9% under stereo
(difference significant at F = 50.9; d.f. = 1, 1768; p < 0.0001). The mean miss rate also
depended on the distance to the fastest-response view, but only in 'ession 1 (F = 1.65; d.f. =
12, 442; p < 0.08). Both response time and miss rate data for session 4 showed no denenfency
on misorientation relative to the best view in either mono or stereo (Figure 7, middle and
bottom).

, tt , tation

4 The viewing sphere, an imaginary sphere centered at the object, is a convenient way of referring to con-
figL rations of the object's views. The attitude of the observer with respect to the object is specified by three
nur ibers: the latitude and the longitude at which the line of sight pierces the sphere, and the rotatir'-i about the
line of sight (assumed here to be zero). Distance between two views, or their misorientation with respect to each
other, can then be defined, e.g., as the angula- distance along a great circle on the viewing sphere.
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Figure 7: Experiment CUES: Top: Development of the coefficient of variation of response time and
miss rate with practice under stereo and mono conditions (identical training and testing views). Note
the different time course of the two conditions in the miss rate plot. Middle: response time vs. distance
to the best view, by session and condition (sessions 1 and 4, indicated numerals on the curves). Bottom:
miss rate vs. distance to the best view, by session and condition.
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These results indicate that the processes of recognition (and, possibly, the underlying rep-
resentations) differed between stereo and mono trials. This difference is apparent in the disso-
ciation between the effects of session un the variation of miss rate in stereo and mono trials (at
least in sessions 2 through 4; see Figure 7, top right panel) and in the lower miss rate in stereo
trials. Furthermore, since both response time and miss rate in stereo trials depended initially
on the distance to the best view, it is not likely that recognition in this case was carried out by
matching the 3D image to a 3D representation: either such a process is attitude-independent,
or the representation is not truly 3D and object-centered. This issue is further explored in the
next section.

5 Generalization to novel views

Rock and his collaborators [24, 25] have repeatedly shown that people are surprisingly bad
at generalizing recognition to novel views of familiar stimuli: his subjects found it difficult to
recognize wire-like objects at misorientations as small as 300 relative to the trained attitude.
This counterintuitive result cast serious doubts on the general validity of theories of recognition
that postulated object-centered representations. Testing generalization to novel views thus
proved to be a powerful paradigm in the study of recognition. In our next two experiments we
exploited this paradigm to make a further comparison between recognition under stereo and
mono conditions, then used an elaborate generalization task to distinguish among three classes
of object recognition theories mentioned in section 2: alignment, linear combination of views
(LC), and nonlinear view interpolation by radial basis functions (RBF).

5.1 Generalization in one direction: Experiment GEN

Experimental results

Four new subjects were trained on 13 views of the same stimuli as in the previous experiment,
spaced at 20 intervals (±130 around a reference view), then tested repeatedly on a different set
of 13 views, spaced at 100 intervals (00 to 120' from the reference view). The mean miss rate was
14.0% under mono and 8.1% under stereo (difference significant at F = 43.1; d.f. = 1, 2392;
A" < 0.0001). Now, the dissociation between stereo and mono conditions was present in the
learning curves of both response time and miss rate (Figure 8, top).

The development of the dependence of response time on misorientation relative to the
training view was also different under mono and stereo conditions. Specifically, regression
analysis for mono trials showed significant dependence of response time on misorientation in
the first session (F = 2.9; d.f. = 2,291, p < 0.05), which subsequently faded away (F < 1 in
sessions 3 and 4), while in the stereo condition no orderly dependence was found in any session
(F < 1; see Figure 8, middle). Miss rate regression data showed differences between stereo
and mono conditions in sessions 1 through 3. As in the case of response times, these regression
differences faded by session 4 (the significance of the stereo/mono difference diminished from
p < 0.0001 in session 1 to p < 0.07 in session 4; see Figure 8, bottom). Notably, miss rate
averaged over conditions in session 4 remained dependent on misorientation (F = 3.27; d.f. =

12, 598; p < 0.0001).

Interpretation

12



5 00

2$ f'

sess'on se llon

5: Stereo: M: Mon-$ Stores: M: Momo
I .. /

.. . ... ... .

...0.. .... . . ... .. .. . . .

OiST from Training View. deg DIST from Training view, deg

FIT vs. DIST by SESSION; MONO RT vs. DIST by SESSION; STEREO

1

4 T/

D0. DIS fro Trinn 0.0 . . . :

1ST from Training view, deg 01ST from T ie.,

MISS vs. DIST by SESSON; MONO MISS vs. DIST by SESSION; STEREO

Figure 8: Experiment GEN: Top: Development of the coeicient of variation of response time and miss

rate with practice under stereo and mono conditions (novel testing views). Note the different time courses

of the two conditions in both plots. Middle: response time vs. distance to the best view, by session and

condition (sessions 1 and 4, indicated numerals on the curves). Bottom: miss rate vs. distance to the

best view, by session and condition.

2.13



Since stereo and mono trials were intermixed throughout the experiment, the dissociation
between the effects of practice (session) on performance suggests that distinct representations
of the stimuli were used, depending on whether 3D information was readily available in the
stimulus. After four sessions, a degree of integration between the representations accessed
under the two conditions seems to have been achieved. This is indicated by the convergence
of the stereo and mono curves for session 4 in Figure 8, and by the increase of the Pearson
correlation, computed from contingency table data, between the number of correct responses
in mono and stereo trials from 0.378 in session 1 to 0.476 in session 4. 5

The residual dependence of the miss rate on misorientation and the lack of such dependence
for the response time (both in mono and stereo trials) is consistent with the nonlinear multiple-
view interpolation mechanism, mentioned in section 2.2.2 [20], assuming that the objects are
represented by sets of views, augmented by view-specific depth information (as in Marr's 21D
sketch). First, note the the RBF scheme (and the CLF scheme after practice) predict no
dependence of response time on viewpoint. Second, the errors in the mono condition can
then be attributed to shortcomings of the interpolation module, such as insufficient number
or size of basis functions, while in the stereo condition similar factors limit the precision of
interpolating the (view-specific) depth values to a novel pose. Furthermore, if in addition the
depth information associated with the stored 2D views is imprecise (e.g., underestimated [4]),
then multiple-view interpolation predicts a lower sensitivity of the miss rate to misorientation
in the stereo trials (in which the interpolation can use more information), without calling for
a perfect performance (which would need perfect 3D information, encoded in object-centered
form). This was indeed the case in experiment GEN.

5.2 Interpolation and extrapolation: Experiment IEO

As experiment GEN has shown, the subjects find it increasingly difficult to recognize the
stimulus as it is rotated away from a familiar attitude. Our next experiment explored the
dependence of this difficulty on the direction of rotation and on the relative position of training
and test views on the viewing sphere. Patterns of generalization discovered in this manner were
then compared with the predictions of the different theories of recognition.

We presented the subjects with the target from two viewpoints on the equator of the viewing
sphere, 75' apart. Each of the two training sequences was produced by letting the camera
oscillate with an amplitude of ±15' around a fixed axis (Figure 9; see also [3]). The subjects
were then tested on static views of either the target or distractor objects. Target test views were
situated either on the equator (on the 750 or on the 3600 - 750 = 2850 portion of the great circle,
called INTER and EXTRA conditions), or on the meridian passing through one of the training
views (ORTHO condition; see Figure 9). Seven different distractor objects were associated with
each of the six target objects. Each test view was shown five times. Two versions of the IEO
experiment were carried out: in the first one (four subjects) the training views were in the
horizontal plane and the ORTHO plane was vertical or, more precisely, sagittal (IEOh,), and in
the second one (two subjects) - vice versa (LEOh).

Theoretical predictions

5The contingency table provides a measure of the conditional probability of a correct response in a mono trial

given a correct response in a stereo trial, and vice versa.
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Figure 9: Experiment IEO: An illustration of the INTER, EXTRA and ORTHO conditions. Computational
theories of recognition outlined in section 2 generate different predictions as to the relative degree of
generalization in each of the three conditions. We have used this to distinguish experimentally between
the different theories.

Consider the predictions of the theories of object recognition outlined in section 2 concerning
the outcome of experiment IEO. First, note that the experiment satisfied both conditions ofSthe alignment theory for perfect recognition, because the subjects perceived 3D structure of the
targets from the training motion sequences, and because there was no occlusion to interfere with
the detection and matching of key features. Consequently, the alignment theory (and others
that rely on object-centered 3D models) predicts uniform low miss rate for INTER, EXTRA and
ORTHO views in both IEOh,, and IEO,,,h experiments.

The linear combination (LC) theory generates several different predictions regarding the
performance under INTER, EXTRA and ORTHO conditions, depending on the exact method
of view combination that is postulated (no difference is predicted for the IEOh,, and IEO,,h
versions of the experiment). The straightforward LC scheme predicts uniformly successful
generalization to those views that belong to the space spanned by the stored set of model views
(in our case, the INTER and EXTRA conditions), and poor performance on views that belong
to an orthogonal space (the ORTHO condition). The convex LC scheme (CLC), in which the
coefficients of the linear combination are positive and sum up to 1, is expected to do better
on INTER than on EXTRA views, and to show some generalization to ORTHO views, because of
expected nonlinearities in a biological implementation (S. Ullman, personal communication).
Finally, the mixed-basis LC (MLC; see section 2.2.1) is expected to generalize perfectly, just as
the 3D schemes are.

The predictions of the RBF theory also vary according to the exact version. Recall that
an RBF-based scheme represents objects by sets of 2D views and generalizes to novel views
through nonlinear interpolation. It can be shown that the best to worst generalization order
is INTER, ORTHO, EXTRA for an RBF implementation that stores just two views (2-RBF) and
INTER, EXTRA, ORTHO for an n-RBF, with n > 2. In addition, differences between IEOh, and
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LEO, versions are predicted if the basis functions in the interpolation module are non-radial
(as they can be in Poggio's nyperBF model [21]; cf. [18]).

Ezperimental results

The results of the LEOh,, and LEO19 h experiments, along with those of their replicas involving
a n-HyperBF model, appear in Figure 10 (see also the summary in Table 1). As expected, the
subjects' generalization ability was far from perfect. In experiment lEO,,,,, a three-way General
Linear Models (GLM) analysis revealed highly significant effects of view type (F = 23.84;
d.f. = 2,524; p < 0.0001) and distance D to view-0 (F = 6.75; d.f. = 6,524; p < 0.0001). The

mean miss rates for the INTER, EXTRA and ORTHO view types were 9.4%, 17.8% and 26.9%.
A second session involving the same subjects and stimuli yielded shorter and more uniform
response times, but an identical pattern of miss rates.

To rule out the possibility that the results were specific to the object set, we conducted
another experiment, this time with balanced objects (second moments of inertia equal to within
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Condition -- Train in Horizontal Plane Train in Vertical Plane
Theory j INTER EXTRA ORTHO INTER EXTRA ORTHO

Alignment Low Low Low Low Low Low
LC Low Low High Low Low High

CLC Low Med High Low Med High
MLC Low Low Low Low Low Low
2?BF Low High Med Low High Med

n-RBF Low Med High Low Med High
n-HyperBF Low Med High Med High Low
Humans 13.3 22.0 48.3 17.9 35.1 21.7

Table 1: Experiment IEO: Miss rate on novel views, by condition, as predicted by the different theories of
object reccrgnition outlined in section 2. The reciprocal of the miss rate is an indicator of generalization.
The last line describes human performance (miss rate, in %).

10%), and four different subjects. A statistical analysis showed highly significant effects of view
type (F = 82.11; d.f. = 2,581; p < 0.0001) and D (F = 15.26; d.f. = 6,581; p < 0.0001), and
a significant interaction (F = 3.01; d.f. = 10,581; p < 0.001). The mean miss rates for the
INTER, EXTRA and ORTHO view types were 13.3%, 22.0% and 48.3%.

The above order of the mean miss rates was changed in experiment EO,,, when the training
views lay in the vertical instead of the horizontal plane. This experiment yielded significant
effects of condition and D (F = 5.50; d.f. = 2,281; p < 0.0045, and F = 3.77; d.f. = 6,281;
p < 0.0013, respectively). The means in the INTER, EXTRA and ORTHO conditions were now
17.9%, 35.1% and 21.7%.

Interpretation

The results of experiment IEOh,, fit most closely the predictions of the GLC and the n-
HyperBF theories and are inconsistent with theories that involve 3D models, while experi-
ment IEO,,h provides further support to the n-HyperBF scheme. The horizontal/ vertical asym-
metry of generalization revealed by this experiment can be accounted for by a non-radial version
of nonlinear interpolation, which assigns different weights to the horizontal and the vertical
dimensions (see Figure 10, bottom right panel). This asymmetry, however, has no obvious
explanation in the LC theory.

6 Generalization to various deformations

Background

In the previous section we have exploited the conflicting predictions of the various theories
of recognition to distinguish between these theories experimentally, by comparing the subjects'
tolerance to different rigid transformations of the stimuli. Additional insight into the process
of recognition in human vision can be gained by extending this approach to nonrigid transfor-
mations. In the next two experiments, we compared the generalization of recognition to novel
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Figure 11: Experiments DEF-R and DEF-NR: Stimuli for the transformation/deformation experiments.
These particular five transformed versions of one object illustrate the transformation classes over which
generalization was tested. Center: the original object. Left Top: rotation in depth around the X
axis. Left Bottom: 3D shear in the X coordinate (X proportional to Y and Z). Right Top: general
linear transformation (same matrix applied to each of the tube's vertices). Right Bottom: nonuniform
deformation (similar to previous, but every other vertex left unchanged).

views that belonged to three different categories: those obtained from the original target object
by rigid rotation in depth, by 3D general linear transformation, and by non-uniform (hence,
nonlinear) deformation (examples appear in Figure 11). Half of the views in the rigid rotation
category were obtained by rotation around the X axis (that is, in the sagittal plane) and half -0
around the Y axis (in the horizontal plane). In the linear category, the transformation methods
were shear in X (specifically, z = ay + bz for each object point), shear in Y (y = ax + bz)
and general linear (represented by an arbitrary 3 x 3 matrix8 ). Altogether, test views obtained
through six different transformation classes were tested. These were paired with two distinct
training modes. In the first mode training was performed with rigid motion sequences, as in
the previous experiments. In the second mode training sequences showed the target deforming
rather than rotating. Both the training and the test stimuli were shown in full stereo.

6.1 Training on rigid views: Experiment DEF-R

Theoretical predictions

The predictions of the different theories regarding this experiment appear in Table 2. The
LC theory predicts generalization to any view that belongs to a hyperplane spanned by the
training views ([31]; see Figure 12, top). Under the CLC+ scheme (which is CLC augmented
by quadratic constraints verifying that the transformation in question is rigid [31]), the general-
ization will be correctly restricted to the space of the rigid transformations of the object, which
is a nonlinear subspace of the hyperplane that is the space of all linear transformations of the
object. The HyperBF scheme represents this subspace by a union of hyper-ellipsoids centered

61n practice, we used matrices that were close to unity (absolute values of off-diagonal elements smaller than

0.1), to avoid excessive distortion.
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Theory 4 Rot-X (1) Rot- Y (+-+) Shear-X (-) Shear- Y (1) 3D Affine Deform
Alignment Low Low High High High High

CLC Low Low Low Low Low High
CLC+ Low Low High High High High

n-HyperBF High Low Low High High High
Humans 27.8 29.2 21.1 32.2 28.5 36.8

Table 2: Experiment DEF-R: Qualitative predictions of miss rate for different test conditions. As in
Table 1, the reciprocal of the miss rate is an indicator of generalization. The last line describes human
performance (miss rate, in %).

on the training views (cf. [23]). Note that these hyper-ellipsoids may extend significantly out-
side the hyperplane spanned by the training views, and that the introduction of an image-plane
horizontal/vertical asymmetry, mentioned in the previous section, affects the generalization in
different directions within the hyperplane, but not outside it. Thus, the n-HyperBF scheme
could exhibit significant generalization to non-uniform deformations, unless its basis functions
are further shaped to conform to the hyperplane structure of the space spanned by the training
views.

Ezperimental results

The data, shown in Figure 13, left, represent means of three subjects. Statistical analysis
indicated that the effect of deformation level was highly significant (F = 64.0; d.f. = 4, 125;
p < 0.0001), and so was the effect of deformation method (F = 4.0; d.f. = 5,125; p < 0.002).
The interaction effect was not significant (F = 1.2), that is, the slopes of the different curves
are roughly the same. The means of miss rate by method appear in Table 2. In a simulated
experiment, the n-HyperBF implementation described in the previous section showed the same
dependence of performance on deformation level as did the human subjects. (Figure 13, right).
The rank order of the means by deformation method was also similar in the real and the simu-
lated experiments: linear regression of real on simulated sequence of means yielded correlation
of 0.7 (F = 3.8; d.f. = 1, 5; p = 0.12). Spearman's rank correlation between the sequences of
means was 0.486.

Interpretation

The results indicate that the degree of generalization exhibited by the human visual system
is determined more by the amount of 2D deformation as measured in the image plane than by
the direction and the distance between novel and training views in the abstract space of all
views of the target object (see Figure 13, left, and Table 2). It is quite amazing that, despite
full stereoscopic presentation of the stimuli, the 2D deformation is such a good predictor of the
subjects' miss rate. The data also show that not all 3D transformations are tolerated to the
same extent, the random deformation (curve 6) being the most difficult. This suggests that if
indeed recognition is carried out by a n-HyperBF-like scheme, its basis functions are shaped to
conform closely to the hyperplane structure of the object space (see Figure 12, bottom).

7 This nonparametric statistic is suitable for our case, in which individual means may be noisy
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Figure 12: Top: An illustration of the three transformation categories explored in the DEF experiments
(the relevant mathematics appear in [31]; see also [8]). A novel view related to the training views by
a rigid rotation is indicated schematically by the small circle lying on the ellipse that represents the
quadratic constraint curve within the space of all possible views of the training object. Another view,
which is the result of a uniform linear but not necessarily rigid transformation, is represented by the
small triangle. A third view is obtained through a nonuniform deformation and is shown by the square
which lies outside the linear space of all possible views. Bottom: A schematic illustration of two ways
to represent objects by multiple views. The CLC+ scheme covers the space of all possible views (rigid
transformations) of the object by imposing a nonlinear constraint (boldface ellipse) on the linear space
S spanned by a small number of training views (V and V2). The HyperBF scheme approximates the
same subspace by a larger set of basis functions (F through F4 ), which can be nonradial and can extend
outside the linear space S.
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Figure 13: Experiment DEF-R: Left: Miss rate vs. 2D deformation level, by deformation method.
Right: An analog of miss rate (arbitrary logarithmic units) vs. 2D deformation level, by method, as
measured in a simulated experiment that involved a HyperBF model. Some of the features, such as the
good performance under the "shear-x" method (curve 3) and the poor performance under the "deform"
method (curve 6), are qualitatively similar in the two plots.

Method Rot-X ()Rot- Y (+-+) I Shear-X (4~)IShear- Y (t) I3D AJfine IDeform Nrone
Humans 25.1 32.5 24.9 20.3 19.7 22.6 23.6

Table 3: Experiment DEF-NR: human performance in the different test conditions (miss rate, in %).

6.2 Training on deforming views: Experiment DEF-NR

The previous experiment provided some indications as to which transformation or deformation
is the easiest to tolerate under more or less natural conditions of representation acquisition
- rigid motion of 3D stimuli. We next asked whether these results depended on the training
method. In other words, is the visual system selectively attuned to the learning of varieties of
rigid motion, or would any well-defined deformation group be learned equally well?

Ezperimental results

To address this question, we used training sequences obtained by iterated deformation of the
target (through the application of the same general linear transform over and over again). Test-
ing conditions were as in the previous experiment. The results for four subjects (see Figure 14,
left) were quite noisy, but they showed a clear dependency of the miss rate on the amount of
2D deformation (F = 6.8; d.f. = 4, 571; p < 0.0002). The overall effect of deformation method
was also significant (F = 2.31; d.f. = 5,271; p < 0.04). Linear regression of real on simulated
(Figure 14, right) sequence of means yielded correlation of 0.54 (F = 1.4; d.f. = 1, 5; p = 0.31).
Spearman's rank correlation between the sequences of means was 0.543.

Interpretation

* 21



.00 _

-- "

23~

ZEFOII1 -EVEL EFOM E
1: rot-x. 2: rot-y. 3: &hear-. 4: shewr-y. 5: dffine. 6: deform. 1: rot- 2: rot-y. 3: shear-x. 4: shear-y. 5: affine. 6: deform.

Figure 14: Experiment DEF-NR: Left: Miss rate vs. 2D deformation level, by deformation method.
Right: An analog of miss rate (arbitrary logarithmic units) vs. 2D deformation level, by method, as
measured in a simulated experiment involving an HyperBF model.

Although Figure 14 appears rather chaotic, the subjects, in fact, did learn something in the
training stage: the mean miss rate for the test views related to the target through a general
linear transformation - the same kind of transformation used for training - was the lowest
among the six methods (see Table 3). While the other recognition theories appear to have no
clear predictions regarding the outcome of experiment DEF-NR, the above finding is consistent
with the n-HyperBF scheme. This scheme, which computationally amounts to an application
of a general functior approximation mechanism to object recognition, will learn any reasonable
(i.e., smooth and low-dimensional) mapping, including the general linear transformation that
underlies the sequence of training views in this experiment. Subsequently, it should exhibit
preferential generalization to the same class of transformations.

Although the correlations between real and simulated orders of miss rate means by method
did not quite reach significance, they encourage further efforts to apply the HyperBF scheme
to model human performance in the deformation experiments. In particular, it remains to be
seen whether human performance can be more closely replicated in a simulated experiment
with a full-blown HyperBF network which would include, unlike the simple version used in our
simulations, adaptive adjustment of basis function centers and sizes, and input weights [21].

7 General discussion

7.1 Overview of the conclusions

Experimental results presented in the preceding three sections speak against the notion that
object representations in the human visual system are three-dimensional, object-centered and
viewpoint-independent (as stipulated, e.g., by Marr and Nishihara [16]). Our subjects always
reported perceiving the stimuli in full 3D during training (due to the kinetic depth effect
and other sources of 3D information), and, in specially designed experiments, during testing.
Nevertheless, the subjects consistently behaved as if they had failed to commit truly three-
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dimensional representations to long-term memory, since their performance (response time in
the initial sessions and miss rate throughout the experiments) did depend on object attitude.
Thus, theories that rely on 3D object-centered representations, e.g., full alignment, seem to be
poor models of human performance in recognition.

The emerging alternative corresponds to a lower stage in Marr's hierarchy of visual process-
ing, the 2-D sketch [15], which is a map-like view-dependent representation that also inh-orpo-
rates view-specific depth information. This representation seems to be used in a manner that
is inconsistent with the multiple-views version of alignment mentioned in section 2.1. Namely,
in generalization to novel views the subjects, after only a few trials, exhibit constant response
latency and, at the same time, miss rate that increases with misorientation relative to a familiar
view.

Of all the recognition theories we have considered that are compatible with 21D represen-
tations, two appear to agree quite closely with the experimental data. These are the CLC+
version of the linear combination theory and nonlinear interpolation by non-radial basis func-
tions (HyperBF). 8 The common features of these two approaches can be visualized with the help
of Figure 12 (bottom). The CLC+ scheme covers the space of all possible rigid transformations
of the object by imposing a nonlinear constraint on the hyperplane spanned by a small number
of training views (three to five, depending on object type and on allowed transformations [31]).
The HyperBF scheme, on the other hand, approximates the same subspace by a larger set of
basis functions, which can be nonradial and can extend outside the hyperplane proper.

Two of our results indicate further that nonlinear view interpolation may be a better model
of human object recognition. These are the horizontal/vertical asymmetry in the generalization
experiments, and the facilitation of recognition by depth cues. Although these findings are
readily accounted for by the nonlinear interpolation approach, 9 it is not clear how to accomodate
them within the Enear combination theory.

7.2 Caveats and extension

In spite of the fact that the experiments described in this paper were carried out with many
different object sets, all the objects were of the same basic type: thin tube-like structures, bent
a, several well-defined locations. This type of object is well-suited for studying the basics of
recognition, because it allows one to isolate "pure" 3D shape processing from other factors such
as self-occlusion (and the associated aspect structure [12]) and large-area surface phenomena.
Although this restriction necessarily limits the scope of our conclusions, an ongoing series of
experiments that involve smoothly splined tubes, as well as spheroidal amoeba-l;1 -e objects, has
already replicated our previous findings on canonical views and generalization (experiments CV
and GEN1 . Switching to spheroidal objects will also facilitate the study of alternative paths to
recognition that a.:e thought to play an important role in human vision: part-whole relationships
[1], distinctive surface coloration and texture [22], the shape of the object', outlir.@ [10J, and
the geometrical invariants of its surface structure [11].

$We regard the CLF scheme, which co-bines nonlinear interpolation with explicit modeL-ig of the time course
of recognition, as subsumed under the HyperBF label.

'This would require nonradial basis functions, already present in the HyperBF implementation, and multi-
dimensional receptive fields that integrate retinal location with disparity. This possibility, including potential
integration of other recognition cues such as color, is outlined, e.g., in [21, 201.
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7.3 Summary s

We have described an ongoing research program that combines psychopkhsical experiments of
object recognition with computational modeling and subsequent evaluation of different theo-
retical approaches to recognition. Ir- particular, we have explored the following topics:

" Recognition of previously seen views and the canonical views phenomenon;

" Generalization of recognition to novel views;

" Generaiation to various deformations of the original object;

" Computational models of human performance in concrete experiments.

Our results so far indicate that the representations of novel 3D objects of the type we have used
are memory-intensive and viewpoint-specific, since the response time does not depend on view-
?oint, but the error rate does. These representations also ivclude limited three-dimensional
information, since stereo cues do facilitate recognition, but in an incomplete an!4 viewpoint-
dependent fashion. Mechanisms that can exploit representations of this kind, such as linear
combination or nonlinear interpolation of views, have been recently proposed and found ade-
quate fcr shape-based recognition of three-dimensional objects. Thus, it appears that three-
dimensional object-centered representations - a culmination of the current paradigm of com-
putational vision - have little computational raison d'6tre, as well as no obvious counterpart
in real life.
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